Def: An infinite sum is a sum of the form

\n
$$
\sum_{n=0}^{\infty} a_{n} = a_{n} + a_{1} + a_{2} + a_{3} + a_{4} + \cdots
$$
\nwhere the $a_{\hat{\lambda}}$ are real numbers.

\nWe say that the sum above converges if there exists a real number 5 where

\n
$$
\lim_{n \to \infty} \frac{N}{a_{n}} a_{n} = \lim_{N \to \infty} (a_{0} + a_{1} + a_{2} + \cdots + a_{N}) = S
$$
\n
$$
\lim_{N \to \infty} \frac{N}{a_{0}} a_{n} = \lim_{N \to \infty} (a_{0} + a_{1} + a_{2} + \cdots + a_{N}) = S
$$
\nThus, case we write that this are called a particular value.

\nIn this case we write that this is an equal sum of the two numbers.

\n
$$
\sum_{n=0}^{\infty} a_{n} = S
$$
\nIf the above limit doesn't exist, then we say that the infinite sum diverges.

$$
\frac{E_{x}}{\sum_{n=0}^{\infty} \frac{1}{2^{n}}} = 1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots
$$
\n
$$
E_{1} = \begin{cases}\n\frac{1}{2^{n}} & \text{all } 1 & \text{all } 2^{n} \\
\frac{1}{2^{n}} & \text{all } 2^{n} \\
\frac{1}{2
$$

Def:	A power series	is an infinite sum	
of the form	\n $\sum_{n=0}^{\infty} a_n (x-x_0)^n = a + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots$ \n	\n $+ a_3 (x-x_0)^3 + \cdots$ \n	\n $+ a_3 (x-x_0)^3 + \cdots$ \n
Now x is an variable and the a_n and			
x_0 are constants. The power series is said to be centered at x_0 .			
$\sum x$ is (Geometric series)			
$\sum x$ is a linearly independent, and the a_n and			
$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \cdots$ \n			
$\sum_{n=0}^{\infty} a_n (x-x_0)^n$ This power series is centered at $x_0 = 0$ \n			
$a_n = 1$	\n $x_0 = 0$ \n	\n $x_0 = 0$ \n	\n Showed that
$\sum_{n=0}^{\infty} a_n x_n = a$ \n	\n $x_0 = 0$ \n		

$$
\frac{Ex^{2}}{x^{2}} = 1 + 5 + 5^{2} + 5^{3} + \cdots
$$
\n
$$
x = 0
$$

diverges

$$
\frac{1}{\text{link of }} \sum_{n=0}^{\infty} x^{n} \text{ as a function } f(x).
$$
\n
$$
\int_{\mathcal{S}_{p}} f(x) = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{2} + x^{3} + \dots \text{ where } f(x) = \frac{1}{1-x}
$$
\n
$$
\int_{\mathcal{S}_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \dots = 1 - 0 = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} f(x) = 1 + 0 + 0^{2} + 0^{2} + \dots = 1 - 0 = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} f(x) = 1 + \frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \dots = \frac{1}{1 - 0} = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} \frac{f(x)}{1 - x} dx
$$
\n
$$
f(x) = 1 + 0 + 0^{2} + 0^{2} + \dots = 1 - 0 = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} \frac{f(x)}{1 - x} dx
$$
\n
$$
f(x) = 1 - 0 = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} \frac{f(x)}{1 - x} dx
$$
\n
$$
f(x) = 1 - 0 = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} \frac{f(x)}{1 - x} dx
$$
\n
$$
f(x) = 1 - 0 = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} \frac{f(x)}{1 - x} dx
$$
\n
$$
f(x) = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{2} + x^{3} + \dots \text{ Therefore, } f(x) = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} \frac{f(x)}{1 - x} dx
$$
\n
$$
f(x) = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{2} + x^{3} + \dots \text{ Therefore, } f(x) = 1
$$
\n
$$
\int_{\mathcal{S}_{p}} \frac{f(x)}{1 - x} dx
$$
\n<

However, $f(z) = 1 + 2 + z² +$ $2^{3} + \cdots$ $f(-3,2) = 1 2 + 7$
3.2 + (-3.2)² + (-3.2)³ + · · · are undefined .

Theorem: There are three possible scenarios for a power series $\sum_{n=a}^{\infty} a_n(x-x_0)^n = a_{0} + a_{1}$ $(x-x_0) + a_2(x-x_0) + \cdots$ $n = 6$

(i) The series converges only when $x = x_0$. Here $\frac{2n}{x}$ There are three
 $(x-x_0)^n = a_0 + a_1(x-x_0) +$

series converges only w

series converges only w
 x_0
 x_1
 x_2
 x_3
 x_4
 x_5
 x_6
 x_7
 x_8
 x_9
 x_1
 x_2
 x_6
 x_7
 x_8
 x_9
 $x_$ you can only P^{L} X= Xo into the Here you can't case we say we say ..
The radius of convergence is $r=0$ G There exists $r > 0$ where the series converges for all X when Series L^{one} $X > 7 - 7$ all λ doesn't converge
but it doesn't converge when
Joesn¹t conver
if X < Xo^{-r} or Xotr < ^X $\overline{\mathsf{X}}$ r is # or $X_{o}+r < X$
r is called the radius $X_0 + C$ Xor Xoth Julyergence
Xor St_{onv}ergence In this case as long as \times is in In this case the series converges At
this interval the series converges At can either in This interval the series conocity. converge e . At
an either
or diverge .

3) The series converges for all x.

 \times

Here $r = \infty$ is the radius of convergence.

The next examples are from Calculus.

$$
\frac{Lx}{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} = 1 + x + \frac{1}{2!} x^{2} + \frac{1}{3!} x^{3} + \cdots
$$

Converges for all x.
Here $x_{0} = 0$, $r = \infty$

$$
\frac{Ex:}{at} The single cosine series centered
$$
\n
$$
\frac{Ex:}{at} X_0 = 0 \quad are:
$$

$$
sin(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{(2n+1)!} x^{2n+1}
$$

\n
$$
= x - \frac{1}{3!} x^{3} + \frac{1}{5!} x - \frac{1}{7!} x^{7} + \cdots
$$

\n
$$
cos(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{(2n)!} x^{2n}
$$

\n
$$
= 1 - \frac{1}{2!} x^{2} + \frac{1}{4!} x^{4} - \frac{1}{6!} x^{6} + \cdots
$$

\nThese both converge for all x

 ζ_{0} , $\tau = \infty$.

EX: We can make a power series cc_o tered at $X_o=1$ that converges t_{0} $\vert n(x)$. It is, $ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^{n}$ from
Calculus = $(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \cdots$ It converges on when $0 < x < 2$. Here we have: graph of $(x-1)^{n}$ $\overline{2}$ $\vert = \chi_{o}$ $r = 1$ $1=7$ ζ ۹, $X_0 = 1$ fadius of

$$
\frac{\pi}{\pi} \left(x \right) = \sum_{n=0}^{\infty} a_n (x - x_n)^n = a_n + a_n (x - x_0) + a_2 (x - x_0)^2 + a_3 (x - x_0)^3 + \cdots + a_3 (x - x_0)^4 + \cdots
$$

Then,

$$
a_{n} = \frac{f^{(n)}(x_{0})}{n!}
$$

$$
\frac{Ex}{\sin(x)} = \frac{1}{x} \cdot \frac{3}{5!} \cdot \frac{1}{5!} \cdot \frac{5}{7} - \frac{1}{7!} \cdot \frac{7}{5!} \cdot \frac{4}{5!} \cdot \frac{1}{5!} \cdot \frac{
$$

$$
Ex: Find a power series for f(x)=x2
$$

\n
$$
Centered at x_{0}=2
$$
.
\n
$$
Let's use the formula above to hopefully\nget an answer.\n
$$
f(x)=x^{2} \rightarrow f(2)=4
$$

\n
$$
f'(x)=2x \rightarrow f'(2)=4
$$

\n
$$
f''(x)=2 \rightarrow f''(2)=0
$$

\n
$$
f^{(3)}(x)=0 \rightarrow f^{(4)}(2)=0
$$

\n
$$
f^{(5)}(x)=0 \rightarrow f^{(6)}(2)=0
$$

\n
$$
f^{(6)}(x)=0 \rightarrow f^{(6)}(2)=0
$$

\n
$$
f^{(7)}(x)=0 \rightarrow f^{(8)}(2)=0
$$

\n
$$
f^{(8)}(x)=0 \rightarrow f^{(8)}(2)=0
$$
$$

$$
f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \frac{f^{(3)}(2)}{3!}(x-2)^3 + \frac{f^{(4)}(2)}{4!}(x-2)^4 + \cdots
$$

= 4 + 4(x-2) + $\frac{2}{2}(x-2)^2$ + 0 (x-2) + 0(x-2) + ...

 $= 4 + 4(x-2) + (x-2)^2$

One can check: $x^2 = 4 + 4(x-2) + (x-2)^2$ And the right-hand side always And the right-hand side alware
Converges since its a finite sum. converges since is increased 5
,00 The radius of convergence is r=
je the formula works for all X.

$$
\frac{\pi_{\text{heorem}}}{f(x)} = \sum_{n=0}^{\infty} a_{n}(x-x_{0}) = a_{0} + a_{1}(x-x_{0}) + a_{2}(x-x_{0}) + \cdots
$$
\nhas $\text{rad}(x) = \sum_{n=1}^{\infty} n \cdot a_{n}(x-x_{0})^{n-1}$
\n $f'(x) = \sum_{n=1}^{\infty} n \cdot a_{n}(x-x_{0})^{n-1}$
\n $= a_{1} + 2 a_{2}(x-x_{0}) + 3 a_{3}(x-x_{0}) + \cdots$
\nand ∞

$$
\int f(x)dx = \sum_{h=0}^{\infty} \frac{a_n}{h!} (x-x_0)^{h+1}
$$

= $a_0(x-x_0) + \frac{a_1}{2} (x-x_0)^2 + \frac{a_2}{3} (x-x_0)^3$

where the power series for
$$
f'(x)
$$

and $\int f(x)dx$ also have
vadii of convergence Γ .

$$
\frac{E x}{x} = \frac{1}{x} \quad \text{and} \quad x_{0} = 1.
$$
\nIf we only look at x > 0, then

\n
$$
\frac{1}{x} = \frac{d}{dx} \left[x(x) - \frac{1}{x} \left(x^{2} - 1 \right) \right]
$$
\n
$$
\frac{1}{x} = \frac{d}{dx} \left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^{2} \right]
$$
\n
$$
\frac{d}{dx} \left[\sum_{n=1}^{\infty} (x-1)^{2} + \frac{1}{3} (x-1)^{3} \right]
$$
\n
$$
= \frac{d}{dx} \left[(x-1) - \frac{1}{2} (x-1)^{2} + \frac{1}{3} (x-1)^{3} \right]
$$
\n
$$
= \sqrt{-1} (x-1) + (x-1)^{2} - \cdots
$$
\nSo,

\n
$$
\frac{1}{x} = \sum_{n=1}^{\infty} (-1)^{n+1} (x-1)^{n-1} = 1 - (x-1) + (x-1)^{2} \cdots
$$
\nwhere, as radius of the success is not a given in the image.

\nwhere $x_{0} = 1$.

\nwhere $x_{0} = 1$.

\nwhere $x_{0} = 1$.

\nSo, $\frac{1}{x} = \frac{e^{x} (1 + e^{x})}{e^{x} (1 + e^{x})}$ is the series.